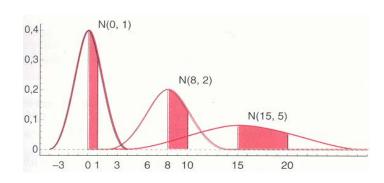
TIPIFICACIÓN DE LA NORMAL $N(\mu, \sigma)$

Las distribuciones normales con las que se trabajan en la práctica no son la estándar, la normal N(0, 1). Para calcular valores de probabilidad de una variable X, normal N(μ , σ), se hace el cambio de variable

$$Z = \frac{X - \mu}{\sigma}$$
, siendo Z la N(0, 1).

Con esto, las diferencias de X respecto de su media μ se "tipifican": se calculan en desviaciones típicas, pues lo significativo no es el valor que tome X, sino cuántas desviaciones típicas es mayor o menor que su media. (En cada caso se utiliza una unidad relativa que es la desviación típica σ).


Ejemplos:

a) En la normal N(0, 1), el valor de Z = 2 está lo mismo de alejado de la media 0, que en la normal N(45, 7) el valor 59, pues $59 = 45 + 2 \cdot 7$. El valor 59 es 2 unidades típicas mayor que la media.

En efecto, para una N(45, 7), si X = 59, el valor de Z tipificado es $Z = \frac{59 - 45}{7} = \frac{14}{7} = 2$.

b) Para la N(
$$\mu$$
, σ) si $X = \mu + 2\sigma \Rightarrow Z = \frac{\mu + 2\sigma - \mu}{\sigma} = \frac{2\sigma}{\sigma} = 2$. Y así con cualquier otro valor.

• El proceso de tipificación se puede explicar gráficamente con ayuda de la siguiente figura. En ella, los recintos coloreados tienen la misma área.

 \rightarrow En el caso de la N(0, 1), el área coloreada mide la probabilidad de que la variable Z tome valores entre 0 y 1: P(0 < Z < 1)

 \rightarrow Para la variable X, N(8, 2), el área coloreada entre la curva y los X = 8 y X = 10, mide la probabilidad P(8 < X < 10). En este caso, el cambio de variable es $Z = \frac{X - 8}{2}$.

 \rightarrow Y lo mismo para la variable *X*, N(15, 5), el área coloreada entre la curva y los valores X = 15 y X = 20, mide la probabilidad P(15 < X < 20). El cambio es $Z = \frac{X - 15}{5}$.

• En general, para la variable $X \approx N(\mu, \sigma)$, la probabilidad de que X < k, se calcula así: $P(X < k) = P\left(\frac{X - \mu}{\sigma} < \frac{k - \mu}{\sigma}\right) = P\left(Z < \frac{k - \mu}{\sigma}\right), \text{ donde } Z \text{ es } N(0, 1).$

Ejemplos:

Si X es una variable normal N(45, 7), la probabilidad de que X tome valores menores de 52, mayores de 52 o entre 45 y 52 es:

1

$$P(X < 52) = P\left(Z < \frac{52 - 45}{7}\right) = P(Z < 1) = 0.8413;$$

$$P(X > 52) = 1 - P(Z < 52) = 1 - P\left(Z < \frac{52 - 45}{7}\right) = 1 - 0.8413 = 0.1587;$$

$$P(45 < X < 52) = P\left(\frac{45 - 45}{7} < Z < \frac{52 - 45}{7}\right) = P(0 < Z < 1) = P(Z < 1) - P(Z - 0) = 0.8413 - 0.5000 = 0.3413$$

Problema

El peso, en kg, de los habitantes adultos de una gran ciudad sigue una distribución normal de media 60 kg y desviación típica 5 kg. Si se elige una de las persona al azar, ¿qué probabilidad hay de que pese?: a) Menos de 50 kg. b) Entre 52 y 65 kg. c) Elegidas 100 personas, ¿cuántas pesarán más de 65 kg? Solución:

La variable X, que mide el peso de esas personas, se distribuye según la N(60, 5). Se tipifica haciendo el cambio $Z = \frac{X - 60}{5}$. Con esto:

a)
$$P(X < 50) = P(Z < \frac{50 - 60}{5}) = P(Z < -2) = 1 - P(Z < 2) = 1 - 0.9772 = 0.0228$$

b)
$$P(52 < X < 65) = P(\frac{52 - 60}{5} < Z < \frac{65 - 60}{5}) = P(-1, 6 < Z < 1) = P(Z < 1) - P(Z < -1, 6) = 0.8413 - (1 - 0.9452) = 0.7865.$$

c) La probabilidad de que una persona pese más de 65 kg es:

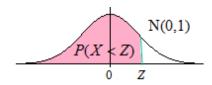
$$P(X > 65) = P(Z > \frac{65 - 60}{5}) = P(Z > 1) = 1 - P(Z < 1) = 1 - 0.8413 = 0.1587$$

Entonces, para 100 personas: $100 \cdot 0.1587 = 15.87 \approx 16$ pesarán más de 65 kilos.

Si el lector necesita ampliar sus conocimientos y trabajar con más ejemplos y problemas puede ir a:

 $\underline{http://static.squarespace.com/static/526e85b4e4b09c47421bd159/t/5442536ce4b08d9eb21298a6/1413632876055/MCCSST09cBIYNOR.pdf$

Pequeños retos


Para la misma distribución N(60, 5), calcula la probabilidad de que una persona pese:

a) Entre 55 y 70 kg. b) Más de 58 kg. c) Más de 66 kg.

Soluciones

a) 0,8186. b) 0,6554. c) 0,1151.

 $\rightarrow \rightarrow$ En la página siguiente se da parte de la tabla N(0, 1).

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7652
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8930
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9561	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9934	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857