
ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

La ecuación de la recta que pasa por los puntos $A(x_0, y_0)$ y $B(x_1, y_1)$ es

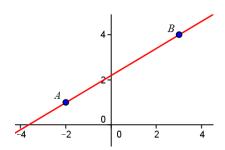
$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} \iff y - y_0 = \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

Si
$$y_1 - y_0 = 0$$
, la recta es horizontal, de ecuación $y = y_0$.

• La misma expresión se obtiene <u>partiendo de la ecuación explícita</u>, y = mx + n, imponiendo que los puntos A y B la cumplan. Así:

como
$$A(x_0, y_0)$$
 debe ser la recta $\Rightarrow y_0 = mx_0 + n$

como
$$B(x_1, y_1)$$
 debe ser la recta $\Rightarrow y_1 = mx_1 + n$


Se obtienen dos ecuaciones, un sistema, con incógnitas m y n. Resolviéndolo se deducen los valores de m y n, y la ecuación buscada

Ejemplo:

La ecuación de la recta que pasa por A(-2, 1) y B(3, 4) será:

$$\frac{x - (-2)}{3 - (-2)} = \frac{y - 1}{4 - 1} \implies \frac{x + 2}{5} = \frac{y - 1}{3} \implies 3(x + 2) = 5(y - 1)$$

$$\Rightarrow 3x - 5y + 11 = 0 \Rightarrow y = \frac{3}{5}x + \frac{11}{5}$$

→ Si se parte de la ecuación explícita, y = mx + n, como A(-2, 1) debe ser de la recta $\Rightarrow 1 = -2m + n$ como B(3, 4) debe ser de la recta $\Rightarrow 4 = 3m + n$

Resolviendo el sistema $\begin{cases} 1 = -2m + n \\ 4 = 3m + n \end{cases}$ se obtiene: m = 3/5 y $n = 11/5 \Rightarrow y = \frac{3}{5}x + \frac{11}{5}$.

Pequeños retos

Determina la ecuación de la recta que pasa por los puntos:

a)
$$A(2, -3)$$
 y $B(1, 0)$

b)
$$C(-1, -1)$$
 y $D(3, 1)$

Solución:

a)
$$y = -3x + 3$$
. b) $y = \frac{1}{2}x - \frac{1}{2}$.