ECUACIONES LOGARÍTMICAS Y MIXTAS

Las ecuaciones logarítmicas vistas en el documento anterior podrían calificarse de clásicas y su conocimiento es imprescindible. No obstante, en la práctica ordinaria surgen ecuaciones que sin ser propiamente exponenciales o logarítmicas se simplifican (y resuelven) si se transforman en ellas; otras veces aparecen situaciones mixtas, en las que expresiones exponenciales o no aparecen juntas. Con frecuencia esas ecuaciones se presentan ante el estudiante como un muro que no se atreve a derribar. Sea como sea, lo único que se puede hacer para mejorar es:

- 1) Conocer y saber aplicar las propiedades de la potenciación.
- 2) Conocer la definición de logaritmo y saber aplicar sus propiedades.
- 3) Saber operar correctamente.

Ecuaciones que se resuelven aplicando logaritmos

Por ejemplo:

$$\log_a b = x \rightarrow (\log_2 21 = x); \log_x a = b \rightarrow (\log_x 1000 = 5); x^a = b \rightarrow (x^{4,2} = 4, 2)$$

• Ecuación $\log_a b = x$

Si la base a vale 10 o e se resuelven directamente con la calculadora: se aplica el antilogaritmo. Si $a \neq 10$ y e puede aplicarse la fórmula del cambio de base o la definición de logaritmo.

Observación:

Para calcular el logaritmo en cualquier base no decimal puede utilizarse la fórmula $\log_a b = \frac{\log b}{\log a}$.

Ejemplo:

El valor de x en la ecuación $\log_2 21 = x$ es $x = \frac{\log 21}{\log 2} = 4,3923$.

→ La fórmula anterior es una consecuencia de aplicar las siguientes transformaciones:

 $\log_2 21 = x \implies (\text{definición de logaritmo}) \ 2^x = 21 \implies (\text{aplicando logaritmos}) \implies$

$$\Rightarrow \log 2^x = \log 21 \Rightarrow x \log 2 = \log 21 \Rightarrow x = \frac{\log 21}{\log 2} = 4,3923$$

• Ecuación $\log_x a = b$

Aplicando la definición de logaritmo se transforma en otra ecuación ya vista, pues:

$$\log_x a = b \implies a = x^b \implies x = a^{1/b}$$

Ejemplos:

- a) $\log_x 1000 = 5 \implies x^5 = 1000 \implies x = 1000^{1/5} = 3,98107 \implies$ Esta operación se hace con calculadora.
- b) $\log_{x} 81 = 2 \implies$ (Por definición de logaritmo) $x^{2} = 81 \implies x = 9$.
- La ecuación $x^a = b$, no es exponencial pero, a veces, el uso de las técnicas anteriores facilita su resolución.

Ejemplo:

La ecuación $x^{4,2} = 4,2$ puede resolverse de dos formas:

1

2

1) Despejando: $x^{4,2} = 4.2 \implies x = 4.2^{1/4.2} = 4.2^{0.2380952381} = 1.407319444$

2) Aplicando logaritmos: $x^{4,2} = 4,2 \Rightarrow \log x^{4,2} = \log 4,2 \Rightarrow 4,2 \log x = \log 4,2 \Rightarrow$

$$\Rightarrow \log x = \frac{\log 4.2}{4.2} = \frac{0.6232492904}{4.2} = 0.1483926882 \Rightarrow x = \text{antilog } 0.1483926882 = 1.407319444$$

Ecuaciones mixtas

Llamaremos así a las ecuaciones en las que intervengan mezcladas exponenciales, logaritmos y otras expresiones.

Ejemplos:

a) La ecuación $\log 7 = 2x - 5$ es lineal. Se resuelve despejando

$$\log 7 = 2x - 5 \implies 2x = 5 + \log 7 \implies x = \frac{5 + \log 7}{2} = 2,9225$$

b) Para resolver $xe^x - 2e^x = 0$ hay que sacar factor común:

$$xe^x - 2e^x = 0 \implies (x-2)e^x = 0 \implies x-2 = \implies x = 2.$$

Una exponencial, cualquiera que sea la base, nunca vale 0.

c) La ecuación $\log(9^{x-1} + 7) = 2\log(3^{x-1} + 1)$ puede resolverse aplicando la propiedades $n \log A = \log A^n$ y $\log A = \log B \Rightarrow A = B$.

En efecto:

$$\log(9^{x-1} + 7) = 2\log(3^{x-1} + 1) \iff \log(9^{x-1} + 7) = \log(3^{x-1} + 1)^2 \iff 9^{x-1} + 7 = (3^{x-1} + 1)^2 \implies 9^{x-1} + 7 = 9^{x-1} + 2 \cdot 3^{x-1} + 1 \implies 2 \cdot 3^{x-1} = 6 \implies 3^{x-1} = 3 \implies x - 1 = 1 \implies x = 2.$$

(En la línea anterior se ha aplicado la propiedad $(3^{x-1})^2 = (3^2)^{x-1} = 9^{x-1}$).

Pequeños retos

Resuelve las siguientes ecuaciones:

a)
$$\log_5 200 = x$$

a)
$$\log_5 200 = x$$
 b) $\log_x 1024 = 10$

c)
$$\ln 3x = 3$$

d)
$$\log 2x = 4$$

e)
$$\log(2x-5) = 1$$

$$f) \ 2\log x^3 = 3$$

e)
$$\log(2x-5)=1$$
 f) $2\log x^3 = 3$ g) $\frac{1}{3}\log\sqrt{2x} = 2$ h) $\log_6 x = 1.5$

h)
$$\log_6 x = 1.5$$

i)
$$\log_4 32 = 3x$$

i)
$$\log_4 32 = 3x$$
 j) $\ln(x-1) = 2$ k) $\ln x^2 = -1$ l) $\log_x 8 = 3$

$$k) \ln x^2 = -1$$

1)
$$\log_{x} 8 = 3$$

m)
$$\log_x 3 = 8$$

n)
$$\log_8 x = 3$$

o)
$$\log_3 x = 8$$

m)
$$\log_x 3 = 8$$
 n) $\log_8 x = 3$ o) $\log_3 x = 8$ p) $\ln \frac{1}{x} = 2$

a)
$$x^2 e^x - e^x = 0$$

r)
$$2x^2 - e = 0$$

q)
$$x^2 e^x - e^x = 0$$
 r) $2x^2 - e = 0$ s) $e^{-x}(x^2 + 1) = 0$ t) $\frac{e^x + 1}{e^{2x}} = 1$

t)
$$\frac{e^x + 1}{e^{2x}} = 1$$

Soluciones:

a) 3,2920. b) 2. c)
$$e^3/3$$
. d) 5000. e) 7,5. f) $\sqrt{10}$. g) $\frac{10^{12}}{2}$. h) $\sqrt{6^3}$. i) 5/6. j) 101. k) $e^{-1/2}$.

l) 2. m)
$$3^{1/8}$$
. n) 8^3 . o) 3^8 . p) e^{-2} . q) ± 1 . r) $\sqrt{e/2}$; s) No tiene sol. t) $\frac{1 \pm \sqrt{5}}{2}$.